Routine HIV Testing: Inpatient, Outpatient & Cost-effectiveness

Rochelle P. Walensky, MD, MPH
Massachusetts General Hospital
Harvard Medical School

"Screening for HIV Infection Can we afford the false positive rate?"

- The case against routine HIV testing
 - False positives
 - Ethics
 - HIV is "different"

Paradigm Shift

- Perception of HIV infection has changed
- HIV tests have better performance characteristics
- Treatment (ART) is highly effective
- HIV case identification is the key to prevention

Characteristics Screening Test

- Significant public health problem
- Test has adequate sensitivity and specificity
- Test is acceptable and easily performed
- Intervention and treatment alter the disease course

CDC HIV Counseling, Testing, and Referral (CTR) Guidelines

- Routine, voluntary HIV CTR for all patients in hospitals with ≥1% HIV prevalence
- These guidelines are rarely followed

The Bottom Line...

- Expanded HIV CTR services are feasible and can have high yield.
- HIV CTR can be justified at prevalences <1% as recommended by the CDC.
- Routine HIV CTR is a highly cost-effective use of health care dollars in the US.

The Inpatient Testing Experience Boston Medical Center 4/99-6/00

- Patients admitted to the medical service were offered HIV counseling and testing
- MA DPH funded on-site counselors
- 473 (6.4%) of the 7,356 medical admissions were voluntarily tested for HIV
- The CTR program was compared to a period of historical control (1/98-3/99)

Results Inpatient Testing

	HIV testing referrals	Number of HIV+ tests	HIV prevalence among referred
Control Period 1/98-3/99	140	20	14.3% (8.5, 20.0)
Program Period 4/99-6/00	473	32	6.8% (4.5, 9.0)

Results Inpatient Testing

- 15-18 patients approached per day, 6-8 tested
- 84 patients identified as HIV-infected
- 81/84 (96%) returned for results
- 81/81 (100%) are in care
- HIV prevalence among those tested ~2%

Program Expansion Urgent Care Setting

- Expansion to urgent care setting
- Established a program called "Think HIV"

Think HIV Objectives

- 1) Establish "Think HIV" in 4 Massachusetts urgent care centers
- 2) Identify and refer to care patients with undiagnosed HIV infection
- 3) Determine the seroprevalence of undiagnosed infection

RP Walensky, W0-DO401; 2003 National HIV Prevention Wednesday 8:00-9:30

Results Outpatients

- January September 2002
- Think HIV offered >7,000 patients HIV testing
- 2,444 (37%) accepted testing

RP Walensky, W0-DO401; 2003 National HIV Prevention Wednesday 8:00-9:30

Results Outpatients

- 48/2,444 (2.0%) undiagnosed HIV-infected patients identified
- 42/48 (88%) patients returned for test results
- 42/42 (100%) who returned for results linked to care
- Cost per case identified = \$4,850

RP Walensky, W0-DO401; 2003 National HIV Prevention Wednesday 8:00-9:30

Some Feedback...

"The price tag probably makes the program too expensive for most states. . . I don't think it will work in the urgent care centers at a suburban mall"

Director, Yale AIDS Program Reuters

Is routine HIV screening cost-effective? If so, at what HIV prevalence?

Cost-effectiveness of HIV Screening Objectives

 To evaluate the clinical and cost-effectiveness of routine HIV screening programs among inpatient and outpatient populations.

Methods Overview

Undiagnosed HIV-infected patient

Detection via development of an OI

Detection via background HIV testing

Screening/Intake Module

New HIV screening program

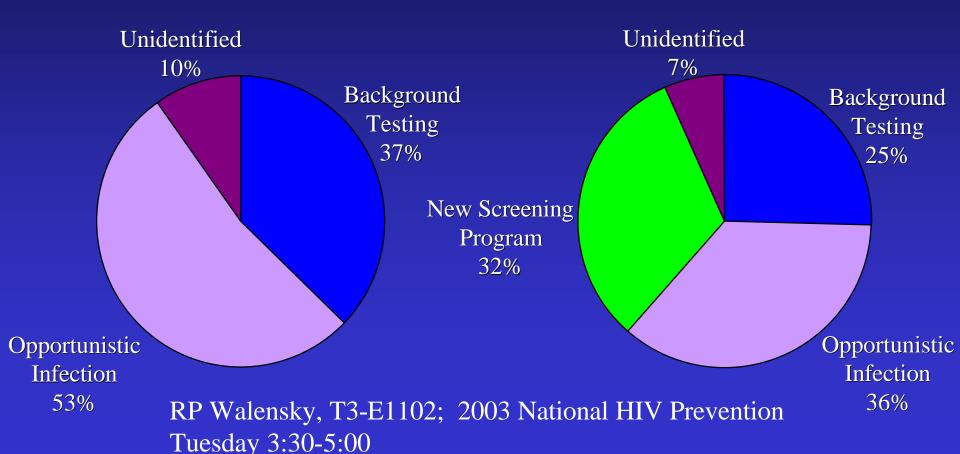
HIV Therapy
ART and OI prophylaxis

Cost-effectiveness of Routine HIV Testing

Inpatients

RP Walensky, T3-E1102; 2003 National HIV Prevention Tuesday 3:30-5:00

Results Inpatient Cost-effectiveness


Prevalence	Population (QALMS)	HIV+ (QALMS)	Cost (\$)	Cost-effectiveness (\$/QALY)
1.0%				
No Testin	ng 204.10	72.30	\$1,200	
Testing	204.20	81.77	\$1,500	\$38,600
0.1%				
No Testin	ng 205.30	72.30	\$120	
Testing	205.31	81.77	\$160	\$50,000

RP Walensky, T3-E1102; 2003 National HIV Prevention Tuesday 3:30-5:00

Results Mechanisms of HIV Detection

With HIV CTR Program

Cost-effectiveness of Routine HIV Testing

Outpatients

AD Paltiel, T3-E1104; 2003 National HIV Prevention Tuesday 3:30-5:00

Three Target Populations

	Undiagnosed HIV Prevalence (%)	Monthly HIV Incidence (%)
High-Risk	3.0	0.1
CDC Threshold	1.0	0.01
US Overall	0.1	0.0012

AD Paltiel, T3-E1104; 2003 National HIV Prevention Tuesday 3:30-5:00

Results Outpatient Cost-effectiveness

- In a high risk population, HIV testing every five years had a cost-effectiveness ratio of \$67,000/QALY gained.
- At the CDC threshold, HIV testing every ten years had a cost-effectiveness ratio of \$57,000/QALY gained.
- Even in the "US Overall Population" a one-time HIV test may be cost-effective: \$39,000/QALY gained.

AD Paltiel, T3-E1104; 2003 National HIV Prevention Tuesday 3:30-5:00

Cost-effectiveness Ratios for Other Screening Programs

Screening Program	C-E ratio (\$/QALY)*	Reference
HIV screening inpatients	\$38,600	Current Analysis
Breast cancer screening Annual mammogram, women 50–69 y/	o \$57,500	Salzmann Ann Intern Med 1997
Colon cancer FOBT + SIG q5y, adults 50–85 y/o	\$57,700	Frazier JAMA 2000
HIV screening every 5 years high risk patients	\$67,000	Current Analysis
Diabetes Mellitus, Type 2 fasting plasma glucose, adults >25 y/o	\$70,000	CDC C-E Study Grp. JAMA 1998

*all costs adjusted to 2001 US dollars

Conclusions

- Routine, voluntary HIV testing programs in both the inpatient and outpatient setting are feasible and can have a high yield of HIV case identification (2.0-6.8%).
- C-E models demonstrate that inpatient HIV screening is cost-effective at an undiagnosed HIV prevalence of 1.0% (likely 0.1%).
- C-E models demonstrate that one-time HIV screening in the US is cost-effective.
- Expansion of routine HIV CTR programs nationally should be a public health priority.

Acknowledgements

Massachusetts Department of Public Health

George E. Barton

Laureen Malatesta, PA

Jean F. McGuire, PhD

Catherine A. O'Connor, CNS

Site physicians, administrators, counselors, and patients

Massachusetts General Hospital

Kenneth A. Freedberg, MD, MSc

Boston University School of Public Health

Elena Losina, PhD

Support

Massachusetts Department of Public Health, AIDS Bureau

CEPAC Investigators

Harvard Medical School

Kenneth Freedberg, MD, MSc

Runa Islam

April Kimmel

Elena Losina, PhD

Tammy Muccio

Paul Sax, MD

Heather Smith

Rochelle Walensky, MD, MPH

Hong Zhang, SM

Harvard SPH

Sue Goldie, MD, MPH

George Seage, DSc, MPH

Milton Weinstein, PhD

Cornell

Bruce Schackman, PhD, MBA

Yale

A. David Paltiel, PhD

Lille, France

Yazdan Yazdanpanah, MD, PhD

Support: CDC (S1396-20/21), NIMH (R01 MH65869) and

NIAID (K23 AI01794, K25 AI50436, R01 AI42006, CFAR P30

AI42851).